Adaptive Classification on Brain-Computer Interfaces Using Reinforcement Signals

نویسندگان

  • A. Llera
  • Vicenç Gómez
  • Hilbert J. Kappen
چکیده

We introduce a probabilistic model that combines a classifier with an extra reinforcement signal (RS) encoding the probability of an erroneous feedback being delivered by the classifier. This representation computes the class probabilities given the task related features and the reinforcement signal. Using expectation maximization (EM) to estimate the parameter values under such a model shows that some existing adaptive classifiers are particular cases of such an EM algorithm. Further, we present a new algorithm for adaptive classification, which we call constrained means adaptive classifier, and show using EEG data and simulated RS that this classifier is able to significantly outperform state-of-the-art adaptive classifiers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

Comparison of Different Linear Filter Design Methods for Handling Ocular Artifacts in Brain Computer Interface System

 Brain-computer interfaces (BCI) record brain signals, analyze and translate them into control commands which are relayed to output devices that carry out desired actions. These systems do not use normal neuromuscular output pathways. Actually, the principal goal of BCI systems is to provide better life style for physically-challenged people which are suffered from cerebral palsy, amyotrophic l...

متن کامل

On the use of interaction error potentials for adaptive brain computer interfaces

We propose an adaptive classification method for the Brain Computer Interfaces (BCI) which uses Interaction Error Potentials (IErrPs) as a reinforcement signal and adapts the classifier parameters when an error is detected. We analyze the quality of the proposed approach in relation to the misclassification of the IErrPs. In addition we compare static versus adaptive classification performance ...

متن کامل

Brain emotional learning based Brain Computer Interface

A brain computer interface (BCI) enables direct communication between a brain and a computer translating brain activity into computer commands using preprocessing, feature extraction and classification operations. Classification is crucial as it has a substantial effect on the BCI speed and bit rate. Recent developments of brain–computer interfaces (BCIs) bring forward some challenging problems...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 24 11  شماره 

صفحات  -

تاریخ انتشار 2012